(89)Zr, a radiometal nuclide with high potential for molecular imaging with PET: chemistry, applications and remaining challenges.

نویسندگان

  • Gabriel Fischer
  • Uwe Seibold
  • Ralf Schirrmacher
  • Björn Wängler
  • Carmen Wängler
چکیده

Molecular imaging-and especially Positron Emission Tomography (PET)-is of increasing importance for the diagnosis of various diseases and thus is experiencing increasing dissemination. Consequently, there is a growing demand for appropriate PET tracers which allow for a specific accumulation in the target structure as well as its visualization and exhibit decay characteristics matching their in vivo pharmacokinetics. To meet this demand, the development of new targeting vectors as well as the use of uncommon radionuclides becomes increasingly important. Uncommon nuclides in this regard enable the utilization of various selectively accumulating bioactive molecules such as peptides, antibodies, their fragments, other proteins and artificial structures for PET imaging in personalized medicine. Among these radionuclides, 89Zr (t1/2 = 3.27 days and mean Eβ+ = 0.389 MeV) has attracted increasing attention within the last years due to its favorably long half-life, which enables imaging at late time-points, being especially favorable in case of slowly-accumulating targeting vectors. This review outlines the recent developments in the field of 89Zr-labeled bioactive molecules, their potential and application in PET imaging and beyond, as well as remaining challenges.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Zirconium-89 Labeled Antibodies: A New Tool for Molecular Imaging in Cancer Patients

Antibody based positron emission tomography (immuno-PET) imaging is of increasing importance to visualize and characterize tumor lesions. Additionally, it can be used to identify patients who may benefit from a particular therapy and monitor the therapy outcome. In recent years the field is focused on (89)Zr, a radiometal with near ideal physical and chemical properties for immuno-PET. In this ...

متن کامل

An octadentate bifunctional chelating agent for the development of stable zirconium-89 based molecular imaging probes.

(89)Zr-based imaging agents hold great promise as novel radio-tracers in nuclear medicine. However, insufficient stability of currently used radiometal complexes in vivo is a safety concern for clinical applications. We herein report the first octadentate bifunctional chelating agent for the development of (89)Zr-labelled (bio)conjugates with improved stability.

متن کامل

The impact of weakly bound ⁸⁹Zr on preclinical studies: non-specific accumulation in solid tumors and aspergillus infection.

UNLABELLED Preclinical studies involving (89)Zr often report significant bone accumulation, which is associated with dissociation of the radiometal from the tracer. However, experiments determining the uptake of unbound (89)Zr in disease models are not performed as routine controls. The purpose of the present study was to investigate the impact of free or weakly bound (89)Zr on PET quantificati...

متن کامل

Alternative Chelator for 89Zr Radiopharmaceuticals: Radiolabeling and Evaluation of 3,4,3-(LI-1,2-HOPO)

Zirconium-89 is an effective radionuclide for antibody-based positron emission tomography (PET) imaging because its physical half-life (78.41 h) matches the biological half-life of IgG antibodies. Desferrioxamine (DFO) is currently the preferred chelator for (89)Zr(4+); however, accumulation of (89)Zr in the bones of mice suggests that (89)Zr(4+) is released from DFO in vivo. An improved chelat...

متن کامل

Immuno-Positron Emission Tomography with Zirconium-89-Labeled Monoclonal Antibodies in Oncology: What Can We Learn from Initial Clinical Trials?

Selection of the right drug for the right patient is a promising approach to increase clinical benefit of targeted therapy with monoclonal antibodies (mAbs). Assessment of in vivo biodistribution and tumor targeting of mAbs to predict toxicity and efficacy is expected to guide individualized treatment and drug development. Molecular imaging with positron emission tomography (PET) using zirconiu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecules

دوره 18 6  شماره 

صفحات  -

تاریخ انتشار 2013